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Large-amplitude free and driven drop-shape oscillations : 
experimental observations 

By E. TRINH AND T. G. WANG 
Jet Propulsion Labor’atory, California Institute of Technology, Pasadena, CA 91109 

(Received 6 May 1981 and in revised form 26 October 1981) 

A quantitative study of some nonlinear aspects of drop-shape oscillations in a liquid- 
liquid system has been completed. The results suggest a soft nonlinearity in the funda- 
mental resonant mode frequency as the oscillation amplitude is increased. Indications 
of an increase in the rate of decay have also been obtained. A study of the internal 
flow fields has revealed patterns of circulation not present at  low amplitude. 

1. Introduction 
The dynamics of small-amplitude drop-shape oscillations of liquid drops have been 

extensively studied in both theory and practice (Miller & Scriven 1968; Marston 1980; 
Trinh, Zwern & Wang 1982). Linear theories dealing with the problem of drop oscilla- 
tions in immiscible liquid hosts have been shown to yield predictions that are in 
general agreement with experimental results. Empirically observed departures from 
the theoretical predictions have often been attributed to effects awociated with large- 
amplitude oscillations. Possible observations of such phenomena have been reported, 
but no rigorous analysis hw been possible because all the relevant parameters had not 
been under the experimenter’s control. This paper deals with the quantitative and 
qualitative investigations of such nonlinear characteristics. Accurate determinations 
of the resonance frequency, the oscillation amplitude, the decay constant, the static 
equilibrium shapes, and the detailed motion during steady-state oscillations and free 
decay have been made possible by an acoustic-levitation technique using radiation- 
pressure modulation (Marston & Apfel 1979). 

After a discussion of the experimental method and of the various effects of the 
acoustic field during driven oscillations, we shall treat the amplitude dependence of 
both the resonance frequency and the decay constant. The variation of the resonance 
frequency with the static equilibrium shape will also be discussed together with the 
asymmetries in the time distribution of the two configurations of the drop undergoing 
acoustically driven oscillations in the fundamental mode. The swept frequency re- 
sponse of a driven drop also appears to yield some interesting characteristics. Finally, 
the internal flow field of a vibrating drop has been shown to possess additional proper- 
ties not found in the small-amplitude region. 

The rigorous interpretation of the observed phenomena is not possible at the present 
time owing to the lack of a nonlinear theory. The detailed analysis of the phenomena 
makes it necessary to isolate the interfering effects of the acoustic field, even though 
these factors only exert a small perturbation upon the motion of the liquid drop. 

The scope of this work is restricted to the consideration of one of the lowest modes 
of oscillation: the axisymmetric oblate-prolate vibration. 

11 F L M  122 
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2. Summary of the results obtained for small-amplitude oscillations 
In  a previous paper we have reported the results of experimental measurements of 

the resonance frequency for the first few modes, as well as of the damping constant for 
the fundamental mode under the restriction of small-amplitude oscillations (Trinh 
et al. 1982). Both the drop diameter and the viscosity of the inner and outer liquids 
were varied. 

A reasonable agreement with the theoretical predictions concerning the relationship 
of the frequencies of the first four resonant modes was obtained for low-viscosity 
liquids (kinematic viscosity less than 5 cSt). The radius dependence of the fundamental 
mode was also determined experimentally for drop viscosities from 1.2 to 120 cSt and 
radii between 0.2 and 0-4 cm. The results have revealed that the power law fa cc B-l*s 
was a good approximation (within 5 %) for all the caaes investigated. 

The experimental results for the damping constant were also in general agreement 
with the theoretical treatments for the viscosity range investigated. Finally, a quali- 
tative study of the internal flow fields of drops oscillating at small amplitude has 
revealed a quasi-potential flow with no apparent circulation. 

3. The experimental technique 
3.1. Acoustic-Jield conjigurations and drop p o s i t i m  

We have used acoustic radiation-pressure forces to trap a drop at a stable position, to 
deform its equilibrium shape, and to drive it into oscillation. A detailed description of 
the apparatus and method haa been given elsewhere (Trinh et al. 1980). 

Figure 1 (a) describes idealized experimental conditions involving a drop of approx- 
imately 1 cm in diameter levitated by an acoustic standing wave established in a 
liquid-filled rectangular cavity (9  x 9 x 13 cm). A standing wave a t  22 kHz used in this 
work has a half-wavelength equal to about 3.4 cm in water at about 22 "C. The vertical 
axis shown in figure 1 (a) is taken as the symmetry axis, and the drop position shown 
is that relevant to the cme of a liquid having higher compressibility and density than 
the host liquid. For such a liquid combination and wave field the acoustic radiation 
forces will drive the drop towards a position of maximum acoustic pressure. The 
magnitude of this force increases with vertical distance from the local pressure anti- 
node. One might also note that there exist two components to the force: the main part 
consists of a vertically directed component, and the other part, much smaller in 
magnitude, exerts a centring action tending to drive the drop towards the central 
symmetry axis. The effects of such a small centring force will be neglected in the 
following discussion. 

Figure 1 (b) shows the same idealized situation, except for the addition of a 66 kHz 
standing wave. The descriptions provided by both figures 1 (a, b) are idealized because 
they do not take into account the effects of the levitated drop on the sound fields. 
With drops of such size one would expect a modification of the acoustic-pressure 
distribution. 

3.2. Equilibrium drop shapes and oscillation drives 

In  the caae of a 22 kHz wave (figure l a ) ,  it is not difficult to realize that a spherical 
drop can be distorted into an oblate spheroid as the acoustic pressure is increased. The 
liquid within the drop is drawn closer to the pressure antinode, thereby flattening the 
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FIGURE 1. Schematic representation of an approximately 1 cm* drop trapped in a 22 kflz 
standing acoustic wave (a). As the acoustic pressure is increesed the radiation pressure forces 
drive the drop into an oblate spheroidal shape. In (a) the drop is placed in two superposed 
standing waves (22 + 66 kHz). AE the amplitude of the higher frequency wave is i n c h  the 
drop is shown to be deformed into a prolate shape. The distortion of the acouatic fields is 
neglected. 

drop at  the poles. A time modulation of the pressure intensity will provide a periodic 
squeezing action to drive steady-state shape oscillations. A theoretical treatment of 
the action of the acoustic radiation-pressure force on a levitated liquid sphere has been 
provided recently (Marston, Loporto-Arione & Pullen 1981), and predicts a distortion 
of the same nature. 

When a 66 kHz standing wave is introduced, an initially spherical drop may take 
two different shapes, depending upon its acoustic properties and size. The sphere may 
deform into an oblate spheroid, aa in the preceding caae, or it may be elongated into a 
prolate spheroid because of the action of two neighbouring pressure mtinodes. 
Modulation of the pressure will then provide an additional driving mechanism opposite 
to that described previously: the drop will be periodically elongated. 

3.3. Effects of the acousticJields on the drop motwn 
3.3.1. Single standing wave. In  the work described in this paper, the modulation of 

the acoustic force is obtained electronically through a balanced modulator. In the 
simplest case, a 22 kHz sinusoidal signal (frequencyf,) is multiplied by a second sine 
wave of much lower frequency ( f , ) .  

The voltage across the transducer terminals is then 

(1) 
The acoustic pressure is proportional to this voltage for linear operation of the 

transducer. The radiation pressure force is proportional to the time average of the 
acoustic pressure squared, and can be described as 

( 2 )  

v, = Ksin (2nf,t) cos (2nfmt). 

P, - (~:ooustic) - cos2 (2nfInt). 
11-2 
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FIQURE 2. Time variations of the acoustic driving force and of the drop response. The drop 
oscillations are shown to be sinusoidal and lagging in phase by approximately 90". A biag in 
favour of the oblate configuration is shown in this particular case. 

Taking the time average of this force over fi1: 

(P> (!i (1 + (47&t))). (3) 

One sees that the resulting effect yields a steady-state force as well aa a slowly 
varying force. For a small density mismatch between the drop and the host liquids, 
this steady force is sufficient to trap the drop at  a stable position, and may also in- 
troduce a small static deformation of the drop. The equilibrium shape about which 
the drop oscillates is no longer spherical, but depends upon the magnitude of the force 
component. 

For the axisymmetric case, and in the linear approximation, the deviation of the 
drop shape from sphericity x(0, t) ( = r(0, t )  - R,, where r(0, t )  describes the drop 
boundary and R, is the radius of the sphere of equal volume) can be expressed as 

m 

n = 2  
z(0,t) = x [~*t+xn:nos(4nfmt+9n)] Pn(cos8), (4) 

where P, (COB 0)  is a Legendre polynomial. 

mental (quadrupole) mode). 
The summation is over all possible shapes of the drop (n = 2 refers to the funda- 

denotes the static distortion resulting from the 
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steady component of the radiation-pressure force. Under the present experimental 
conditions the following relationships are assumed to hold: 

s Gbt, ~2 > ~n+2. (5 )  

In the case of a 22 kHz standing wave, the periodically oscillating component drives 
the drop into the oblate shape, while the interfacial tension provides the restoring 
action. Figure 2 depicts the time dependence of the driving force FR(t) and the ideal 
response of the drop at  resonance. The response is assumed to be sinusoidal, and lagging 
in phase by 90'. One should note that the acoustic radiation force never becomes 
negative. 

3.3.2. Two standing waves. The experimental conditions pertaining to this work also 
involve a 22 kHz standing wave used to position the drop, and a time-modulated 
66 kHe wave used for the oscillation drive. In this case the voltage across the trans- 
ducer becomes 

(6) 
and ( 4 )  becomes 

V, = V, sin (2nfpt) + V, sin (2nfct)sin (2mfmt), 

where 
In the present case we also have 

is the drop static distortion introduced by the additional positioning field. 

x2 sz$y. (8) 

Assuming that we have a situation where the drop is periodically elongated at the 
poles, an additional complication arises. Upon inspection (see figure 1) one realizes 
that the levitating field will exert a force on the liquid in the elongated parts of the 
drop. The extent to which the acoustic field interferes with the free motion of the drop 
will depend on the strength of the levitating standing wave. For a nearly neutrally 
buoyant drop (i.e. Bpjp 6 0.005), such an effect will remain quite s ~ a l l ,  and could be 
neglected if one further restricted the oscillations to small amplitudes. On the other 
hand, in the caae of large-amplitude oscillations this additional factor must be 
accounted for. 

4. Resonance-frequency dependence on oscillation amplitude 
4.1. Free decay 

4.1.1. Experimental results. A measure of the free &cay frequency of an oscillating 
drop may be obtained from either oscilloscope records, or motion-picture analysis. 
The procedure consists of first driving the drop into steady-state oscillations in the 
vicinity of the resonance frequency, abruptly shutting off the excitation, and observing 
the decay phase. The amplitude dependence may be studied by measuring the decay 
frequency while gradually increaaing the steady-state drive, or by measurements at  a 
Werent time after the drive termination. 

The time varfations of the drop shape are obtained through an optical technique 
monitoring the dimensions of the drop along its vertical (or horizontal) major axis. 
The shadow of a drop placed in the path of a collimated light beam (6 cm in diameter) 
is focused, apd centred on a narrow slit. The image of this slit is in turn focused on 
a phototransistor which follow5 the variations in light intensity due to the drop 
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FIUURE 3. Relative change in the free-decay frequency aa a function of the initial oscillation 
amplitude. The axial ratio L/ W is measured at maximum deformation during the steady-state 
drive prior to the free decay phase. The drop are of a silicone oil/CCl, mixture, and are immersed 
in distilled water. 

deformations. The variations of the r.m.8. voltage from the photodetector hasl been 
measured as a function of the oscillation amplitude, and a linear behaviour has been 
obtained up to a maximum axial ratio of 1.85 for a prolate ellipsoidal shape. 

The free decay frequency can be determined with a relative uncertainty of & 1 yo. 
A sample of the experimental results is shown in figure 3 for two characteristic drop 

sizes: 0.5 cmsand 1.0 cmS(thedropradiiareequalto0.49 cmand0.62 cmrespectively). 
The results are for drops of a silicone oil/CCl, mixture immersed in distilled water and 
for a prolate-biased initial oscillation drive. The percentage of the relative change in 
the decay frequency is plotted as a function of the maximum deformation with the 
drop in the prolate shape. This latter characteristic is quantified by the ratio of the 
major over the minor axis. fo is the measured free decay frequency for very-small- 
amplitude oscillations. The initial shape oscillations were provided by a modulated 
66 kHz standing wave, and the equilibrium shape was slightly prolate. 

Under these conditions, the linear theory would provide the following description 
of the drop deformation after the oscillation drive is turned off at t = 0: 

W 

x(0, t 2 0 )  = [%kt + x; cos (2nj’,”t + 9;) exp ( - b:, t )  
n=2 

+ X; cos (27rf;t + 9;) exp ( - b; t ) ]  P!(cos 6). (9) 

The single-prime term describes the decay of the steady deformation induced by 
the oscillation drive, and the double-prime term the decay of the driven shape oscilla- 
tions. At t = 0, and comparing with (7)) one has 

x:, = xpt,  $75; = 0, xi  cos = xn cos 9,. (10) 

In  this particular experiment we have the conditions 
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FIQURE 4. Variations of the free-decay frequency aa a function of the positioning voltage (V:), 
and of the static distortion W / L  for 0.6 and 1 oma drops. 

According to available linear theories (Prosperetti 19SOa, b), .fA, .fl, bA, and 6; are 
time-dependent, and should approach constant values only in the asymptotic regime. 
The experimental determination of the free decay frequency for small-amplitude 
initial oscillations has revealed, however, that  this parameter was constant. We have 
therefore assumed that for the low viscosity of the two liquids considered here, and 
the relatively large size of the drops, this asymptotic regime is attained on a timescale 
small compared with the fundamental period of oscillation. 

Similar results were obtained for the free-decay frequency when the initial forced 
oscillations were provided by an oblate-biased mechanism. 

Information regarding the effects of the steady acoustic positioning force may be 
obtained from an investigation of the dependence of the resonance frequency upon its 
magnitude for both small- and large-amplitude oscillation. Figure 4 is a plot of the 
resonance frequency squared as a function of the positioning voltage squared (V;), for 
drops having volumes equal to 0.5 and 1-0 cms, and for small-amplitude oscillations 
(2; g &). An approximately linear dependence may be obtained within the experi- 
mental uncertainty. An extrapolation to zero voltage should yield the approximate 
resonance frequency in the absence of the acoustic positioning force. The data given 
by figure 3 has been obtained with VE always less than 9 Va. 
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Decay from steady prolate drive 
Maximum prolate deformation L/ W., . 1.66 1.76 1.82 

Tpml.te 
Tcpcle 

T C Y C L a  

0.53 0.55 0.56 

0.47 0.45 0.44 

Decay from initial static prolate deformation 
Initial prolate deformation L/W. .  . 1-40 1.57 

0.60 0-61 

0.40 0.39 

TABLE 1. Variations of the distribution of the two configurations characteristic of the funde- 
mental mode as the oscillations amplitude is increased. The results are for free decay from 
steady-state oscillation driven by the prolate-biased mechanism, and for free decay from a static 
deformed prolate shape. 

Figure 5 displays the results of free-decay frequency measurements when both the 
oscillation amplitude and positioning force intensity are varied for a 1 cm3 drop. One 
finds that the upward shift in resonance frequency (due to the larger levitation force) 
remains relatively constant as the amplitude of the oscillations is increased. 

An analysis of the asymmetry in the distribution of the oblate and prolate phases 
during free decay has revealed some interesting results. Two procedures have been 
used: the first one involves the study of the decay phase of the oscillatory motion after 
the termination of a steady-state drive, and the second method consists of statically 
deforming the drop into the prolate or oblate shapes and observing the decay phase 
subsequent to the nulling of the deforming force. The data are given in table 1, where 
the percentage of the period spent in each phase is listed aa a function of the maximum 
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Maximum oblate distortion 
W I L  = Cycle number after 

termination of the T,* 
steady drive TOYO 

1 0.61 0.49 0.61 0.49 
2 0.63 0.47 0.63 0.47 
3 0.64 0.46 0.66 0.46 
4 0.67 0.43 0-60 0.40 
6 0.60 0.40 0.64 0.36 

DWEY from static oblate distortion 
Initial static oblate distortion 

W I L  = 1.4 

+-a TwoLtS k e  TraQhte 

Cycle number TOTcl0 Tcyc1e Tcycle TwcI. 

W I L  = 1.21 

1 0.62 0.48 0.64 0.46 
2 0.64 0.46 0.66 0-44 
3 0.68 0.42 0.63 0.37 
4 0.60 0.40 
6 0.64 0.36 

TABLE 2. Time variations of the configuration distribution during decay from steady-state 
oscillations driven by the oblate-biased mechanism, and from an oblate static shape. These 
results show an enhancement of the duration of the prolate configuration with larger amplitude. 

prolate (or oblate) deformation during steady-state oscillation, or during the static 
deformation state. The measurements have been taken during the first full period 
immediately after termination of steady drive, or after the release of the steady dis- 
tortion. The data were obtained from high-speed motion pictures, and the accuracy 
in the determination of the duration of each phase was -& 1 frame, resulting in an 
uncertainty of & 3 yo in the time distribution of each configuration. 

In  the case of oscillations initially driven by the prolate-biaaed mechanism, the 
dominance of this configuration is increased as the oscillation amplitude grows larger. 
This asymmetry is almost totally removed, however, when the oscillations are damped 
to small values. One might attribute this dominance of the prolate shape to the non- 
spherical equilibrium shape induced by the steady-state component of the radiation- 
pressure force. Additional evidence provided by the free decay of oscillations initially 
driven by the oblate-biased mechanism suggests another explanation. The results of 
the latter type of experiments show a gradually lengthening duration of the oblate 
phase as the oscillation amplitude decreases. Because the equilibrium shape in this 
instance is that of an oblate spheroid, this is a strong indication that large oscillatory 
excursions enhance the duration of the prolate configuration. Table 2 illustrates the 
results. 

The results of table 1 appear to indicate a slight difference in the time distributions 
of the shapes. Free decay from a static distortion is seen to accentuate the asym- 
metry. An additional observation concerning the free decay frequency might also be 
worth mentioning at this time: it appears that  the oscillation frequency measured 
during the decay phase from a statically distorted shape (prolate or oblate) displays 
fluctuations not found during the free decay from steady-state driven oscillations. 
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This could be interpreted as the manifestation of the higher resonant modes from the 
continuous and discrete spectra (Prosperetti 1980a, b). 

4.1.2. Discussion. The results given in figure 5 imply that the static levitation force 
influences the dynamics of a 0.5 cms drop to a lesser extent than in the case of a 1 cm3 
drop. A phenomenological explanation may be provided by the more significant dis- 
tortion experienced by the larger drop levitated in the same standing-wave field. The 
additional surface energy of a distorted shape is reflected in a larger interfacial tension. 
In addition, even with small static drop deformations, the effect of the positioning 
acoustic field might also contribute to this difference. Finally, the fact that xd (equation 
(9)) is not zero might also influence the above results. A partial explanation of the 
drop size dependence found in the results (figure 3) would therefore be provided by 
the interference of the acoustic forces, this interference being weaker for smaller-size 

It is also possible that the characteristic nonlinearity associated with the large- 
amplitude oscillations has an inherent drop-radius dependence. A confirmation of 
such a hypothesis can only be provided by a nonlinear theory. Such an undertaking is 
beyond the scope of this work. 

In  any caae, there are strong indications that the natural frequency (measured 
during free decay) decreaaes with increasing amplitude for shape oscillations in the 
fundamental mode. A relative decrease of 10.5 yo has been measured for a 0-5 cms drop 
undergoing oscillations characterized by a maximum deformed prolate shape with an 
axial ratio of 1.9. The true value of the frequency shift may be slightly higher, and 
would be measured in the absence of any additional static force. 

drops. 

4.2. Driven oscillations 
4.2.1. Swept frequency response. An alternative method for the measurement of the 

resonance frequency is provided by the swept-frequency response of the drop. In 
principle, this technique allows the determination of the resonance curve, and the 
measurement of the damping constant through the experimental &-value. In this 
work, the modulation frequency is varied linearly within a range bracketing the drop 
fundamental mode. The sweep rate used is 10 mHz/s, and the sweep time is 100 s. 

The two available driving modes have also been used with apparently contradictory 
results: the fundamental resonance frequency was shown to decrease with increasing 
oscillation amplitude when the drive providing an elongation of the drop was chosen, 
but the reverse was obtained with the opposite driving mode. 

The results are shown in figures 6 and 7. Figure 6 reproduces the experimental 
resonance curves obtained at various oscillation amplitudes, and with the ‘elongating’ 
drive supplied by a modulated 66 kHz standing wave. Figure 7 gives similar results 
for the opposite driving mode. The ordinate scales on figures 6 and 7 are not the same; 
the displacements represented by the curves of figure 6 are significantly smaller than 
those shown in figure 7. 

Figure 8 is a plot of the measured shift in resonance frequency as a function of the 
ratio L/ W for both driving modes. The frequency increase associated with the oblate- 
biaaed mode is found to be significantly less than the frequency decrease resulting 
from the opposite driving mode. 

4.2.2. Steady-state oscillations. Figure 9 illustrates the increasingly larger bias 
towards the prolate configuration when a I cm3 drop is excited by the appropriate 
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FIGURE 6. Swept frequency response of a 1 om8 drop around its fundamental (L = 2) resonance 
mode. The oscillation drive is prolate-bid, and the various cu~lree have been obtained for 
increaaingly larger excitations. The oscillation amplitudes 8 s ' ~  large (z , /Ro 3 0.1). 

1-55 

FIQTJRE 7. Swept frequency response of the same drop as in figure 6, except that the oblate- 
b i d  drive has been used. (x , /Ro > 0.2). 

drive. One finds that the prolate configuration occupies a considerably longer time as 
the oscillation amplitude grows larger. These photographs have been obtained under 
strobed illumination whose phase relationship with respect to the driving force could 
bevaned at will. Shown here are the mid-plane profiles with the symmetry axis vertical 
in the plane of the picture. The phases associated with the various configurations are 
measured with respect to the spherical shape (arbitrarily used tm a reference 360'). 

A symmetrical reversal of the time distribution of the two configurations does not 
take place, however, when the opposite driving mode is used. Observations of the 
steady-state, large-amplitude, oblate-biased forced oscillations have revealed that the 
fraction of the oscillation period during which the drop is in the oblate shape cannot 
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FIGURE 8. Measured peak-frequency shift as a function of the oscillation 
amplitude for both driving modes. 

be made to dominate as significantly as in the case of the prolate-biased drive. Even 
for significant oscillation amplitudes (x,/R, 2 0.3), the time distribution of the two 
configurations remains roughly balanced, i.e. Foblate x TDrolate. 

5. The damping of large-amplitude oscillations 
The damping rate of oscillating drops has been measured as a function of the 

oscillation amplitude through high-speed motion-picture Bnalysis, as well as through 
oscilloscope decay traces. Some representative results are reproduced in figure 10. 

The data-gathering procedure is as follows. The drops are first driven into steady- 
state oscillations at the fundamental resonance frequency; the acoustic excitation is 
then cut off, and the decay process is recorded on the oscilloscope and high-speed cine 
films. The initial conditions are 

xi @ x;*,, x; @ x$$, x; @ x;, @ x;, x;p, 3 0.1. 

Figure 10 reproduces the decay curves for individual drops on a semi-logarithmic 
scale. A striking exponential behaviour is obtained for the various initial excitations, 
although the measured decay rates appear to be different for different initial L/ W. 
This appears to suggest that in this case the rate of energy dissipation is controlled by 
the iriitial conditions. This is quite plausible because the established flow-field con- 
figurations both inside and outside the drop will no doubt influence the damping of 
the motion. Thus, the decay mechanism of large-amplitude drop-shape oscillations is 
characterized by a fixed constant rate which appears to depend on the initial estab- 
lished flow fields. 

The rate of decay hm been measured from the first oscillatory cycle after the 
termination of the steady-state drive. This decay rate is not only that denoted by 
bg (see (Q)), but also includes a contribution from b,, sir-ce x; 9 0. 
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FIGURE 9. Time distribution of the prolate and oblate configurations during steady-state drive 
supplied by the prolate-biased mechanism. A nearly spherical shape is arbitrarily chosen as the 
reference configuration (360"). 

Figure 11 shows the measured damping rate for different drops. For each individual 
drop the decay rate is measured for increasingly larger initial oscillakion amplitudes. 
This latter parameter is represented by the ratio L/W plotted along the abscissa and 
measured in the steady-state phase. The relative large experimental uncertainty 
( 5 5 yo) does not allow any definitive conclusion, although one could perceive a slight 
increasing trend with larger axial ratios. 
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FIUIJRE 10. Semi-logarithmic plot of the time evolution of the oscillation amplitude 
during free decay for a 1 cms drop. 
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FIUURE 11. Free-decay damping rate aa a function of the maximum oscillation amplitude. 
W, 0, 1 cms drops; 0 ,  0.7 cm3 drops; 0, 0.5 cms drops. 
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The present experimental study has not revealed any inherent time dependence for 
the damping parameter even for small-amplitude oscillations. Such a dependence haa 
been suggested on the basis of theoretical analysis (Prosperetti 1980a, b), but such a 
phenomenon does not appear to be a characteristicof the decay of aninitially oscillating 
drop in the resonant mode. 

6. Internal flow fields 
A study of the characteristics of the internal flow fields within oscillating drops is a 

natural approach to the problem raised by the observed phenomena cited in the pre- 
ceding sections. Such an experimental study haa not yet been attempted for the caae 
of liquid drops undergoing large-amplitude shape oscillations. A photographic tech- 
nique using the streak patterns of suspended dye particles has been used in this work 
to yield two-dimensional pictures of the fluid-particle flow fields. 

Organic dye particles with size ranging between 6 and 60 ,um are dispersed in the 
drop liquid. The pmticles close to the central midplane containing the symmetry axis 
are illuminated by a plane light sheet, and the 90' scattered light is photographed 
while the drop is driven into steady-state oscillations. The exposure usually lasts for a 
few oscillatory cycles. Figures 12 and 13 reproduce the resulting streak patterns of 
oscillating particles situated in the plane containing the symmetry axis. These photo- 
graphs show the evolution of the fluid flow pattern as the oscillation amplitude is 
increased. All drops are undergoing steady-state oscillations in the fundamental 
mode. 

In figure 12 the maximum oscillation amplitude resulting in the bottom-right 
pattern is on the order of 20 % of the equilibrium spherical radius. The pattern of the 
upper-left picture results from a relative amplitude amounting to about 6%. The 
essential feature of these internal flow fields is the gradual spreading towards the 
centre of a steady circulation superposed upon the oscillatory motion. This pheno- 
menon is better illustrated in figure 13, where the oscillation amplitude is varied from 
8 % to 20 yo of the equilibrium radius. In photograph (a) the steady drifting motion 
of the fluid particles appears limited to the outermost pmts of the drop. Photographs 
(b) and (c) reveal a spreading of this steady motion to the inner drop regions. Note, 
however, that even in photograph (c) the centre of the drop remains motionless, and 
the particles along the two intersecting axes still undergo a strictly linear oscillatory 
motion. Together with the spreading of the circulatory motion, the velocity of this 
steady drift also increases tw the amplitude grows. Photograph (d) is a seemingly erratic 
oscillatory motion. No distinct pattern can now be distinguished, although the basic 
fourfold symmetry is still preserved. 

Similar phenomena may be observed within a drop oscillating in the L = 3 mode. 
In addition to the characteristic modification in the flow pattern rtssociated with the 
oscillatory mode, a difference arises in the threshold for the appearance of circulation: 
the onset of the steady drifting motion is characterized by a substantially smaller 
oscillation amplitude than in the L = 2 mode. Figure 14 reproduces photographs of 
the two different drops undergoing vibrations in the L = 3 mode. The upper row of 
photographs reveals a substantially more disordered pattern as the vibration ampli- 
tude is increased. The lower row shows a well-defined circulation together with the 
disappearance of the characteristic symmetry. An addit,ional property of interest is 
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L = 2 internal flow patterns 

FIUUEE 12. Streak patterns of suspended dye particles in the midplane of an oscillating drop in 
the L = 2 mode. The drop liquid is silicone oil (50 cSt), and the host liquid is a mixture of distilled 
water and methanol. The appearance of a steady drifting motion is visible aa the oscillation 
amplitude is increased. The Reynolds number varies from about 2 to 10. 
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L = 2 internal flow patterns 

(C) (d )  

FIQURE 13. Same aa figure 12. The 1 cma drop is made of a silicone-oil-CC1, mixture (3.2 cSt), 
and is immersed in distilled water. 
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L = 3 internal flow patterns 

FIGURE 14. Streak pattern within a 1.6 cmS drop (3.2 cSt silicone-oil-CC1, in water in the 
upper row, 60 cSt in water-methanol in the lower row) oscillating in the L = 3 mode. 

the closed path taken by some oscillating particles no longer moving along a linear 
trajectory. The consistent appearance of the circulatory pattern in the bottom half of 
the drop is probably an artifact caused by the asymmetry in the acoustic field. 

No systematic treatment of the flow pattern in the outside host liquid has been 
undertaken in this work because the emphasis hits been placed upon phenomena 
involving the drop itself. There is no obvious rewon, however, why the same technique 
could not be used for a similar qualitative study of the external flow field. 

7. Rotational motion 
An additional phenomenon arises when the oscillation amplitude attains a sub- 

stantial value: the onset of an apparent rotational instability. Such a rotation can 
easily be observed during large-amplitude steady-state oscillations, and it reveals 
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Drop rotation 

FIGURE 16. Dye-particle flow pattern for oscillating, rotatingand-oscillating, 
rotating, and still drops. 

itself at first aa a running wave on the drop surface which subsequently develops into 
a solid-body rotation of the drop fluid. 

Figure 15 reproduces photographs of an oscillating drop in the L = 2 mode (a) ,  a 
rotating+scillating drop (b ) ,  a rotating drop after the oscillation drive has been 
terminated (c), and finally a quiescent drop at equilibrium ( d ) .  
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The origin of such an 'instability' is not yet clear. It might be associated with the 
characteristics of large-amplitude oscillations, but it could also arise because of the 
asymmetry and misalignment of the drop in the acoustic field. 

The appearance of the drop rotation does not depend only on the oscillation ampli- 
tude, but also shows a very marked dependence upon its frequency. It appears that 
the onset of surface particle rotation can always be started when the drive frequency 
is slightly higher than the drop resonance frequency, but such rotation never takes 
place if the drive frequency is maintained at or below the drop resonance frequency. 
This latter frequency continuously shifts to lower values as the oscillation amplitude 
increases. 

Because of this frequency dependence one might conjecture that there exists an 
independent running wave mode with a slightly higher resonance frequency than the 
L = 2 mode. Another possibility, however, may also be that a misalignment of the 
drop axis with respect to that of the acoustic field leads to a net torque on the drop. 
An analysis reveals that such a destabilizing torque arises only when the drop response 
lags the oscillation drive in phase by an angle larger than 90°, a situation which would 
arise with a drive frequency higher than the drop resonance frequency. It is unfortun- 
ately not yet possible to make a definitive statement as to which is the correct answer, 
for the perfect alignment of the drop axis along the acoustic field is not a trivial 
experimental matter. 

As a la& comment, one might add that the rotation is not restricted to the funda- 
mental mode. The onset of the running wave has also been observed for drops oscillat- 
ing in the L = 3 mode. 

8. Other phenomena associated with largeamplitude shape oscillations 
As the oscillation amplitude is greatly increased, and if the rotational or other 

instabilities are avoided, the increasingly larger deformation may cause the drop to 
split. Radiation-pressure-induced drop fission wm first observed with 2 mm diameter 
drops (Marston & Apfel 1980), and our present results confirm that cavitation-free 
splitting of 1 cm diameter drops is also possible when the acoustic wavelength is 
comparable to the drop diameter. Figure 16 illustrates the stages of such dynamic 
fission for a 1 cms silicone oil (50 cSt) drop in water. The formation of the third smaller 
satellite drop often accompanies the splitting into the two main droplets. 

By an appropriate combination of the acoustic forces, it is also possible to excite 
drops into modes of oscillation which are not the pure resonant shapes, and at fre- 
quencies not corresponding to any of the normal modes derived from the linear theory. 
These odd oscillatory modes are likely to be combinations of the various pure modes, 
including those involving non-axisymmetric geometries. An example is given by 
figure 17, where photographs (a) and (c) are the principal shapes associated with phase 
lags equal to 90' and 270" respectively, and photos (b) and (d) are intermediate con- 
figurations. This mode is excited at  a frequency slightly higher than that corresponding 
to  the L = 3 mode for the same drop. The drop liquid is phenetole and the host liquid 
is a mixture of H,O and methanol. The oscillation drive is provided by a 66 kHz 
standing wave. 
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Dynamic drop fission 

FIGURE 16. Stagerr of dynamic drop fission by acoustic radiation pressure. 
The drop is 1.6 cm3 in volume. 

336 
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( C )  

FIGURE 17. Drop oscillating in a non-normal mode. 
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9. Summary and conclusion 
The upward shift in the free decay frequency as the oscillation amplitude is reduced 

suggests the appearance of a soft nonlinearity in the fundamental resonance frequency. 
This result is qualitatively similar to the lowering of the resonance frequencies of air 
bubbles oscillating radially in water (L  = 0 mode) when the oscillation amplitude is 
increased (Lauterborn 1976). In the cases of bubbles this behaviour is described by the 
nonlinear equation of motion whose solutions have been obtained numerically. For 
the present case of the drop-shape oscillations, however, no successful nonlinear treat- 
ment has yet been proposed. 

In  contrast with the free decay frequency, the decay rate has been shown to be 
constant for a given initial condition on the oscillation amplitude. As might have been 
expected, the results of the decay rate measurements reveal a dependence on the 
established initial conditions. A hint of an increase in the decay rate has been obtained, 
but no definite quantitative conclusion can yet be drawn. 

The qualitative study of the internal flow field of steady-state oscillating drops has 
revealed flow fields which are more complicated than'suggested by the simple linear 
theory. Circulation has been shown to be present even for the relative oscillation 
amplitude as low as 8 yo, and appears to originate first at the drop boundary and to 
spread subsequently towards the drop interior. 

Finally, the possibility of a rotational instability was investigated, but no con- 
firmation was.forthcoming owing to the unresolved dilemma involving the role of 
the asymmetry of the acoustic field. Dynamic drop fission was demonstrated as well as 
the existence of modes which cannot be derived from the linear theory. 

We wish to thank Prof. Philip Marston for his many helpful suggestions, and 
Mr E. Olli for his technical advice. This work is supported by the National Aeronautics 
and Space Administration under contract NAS 7-100. 

Appendix 

listed are for a temperature of 23 "C. 
We give in table 3 relevant properties of the liquids used in this study. The values 

Liquid 
Distilled water 

Sound 
Density speed 

0.998 1503 
(g/cmS) (m/s) 

Interfacial 
tension 

(dyn/cm) 
- 

Dow Corning 200 Silicone 
(5 CSt) + cc1, 

Dow Corning 200 Silicone 
Oil, 60 cSt 

1.001 960 

0.96 1005 

37 
(in water) 

32 
(in water + 
methanol) 

Kinematic 
viscosity Figure 

number 
0.95 All except 

12, 14, 16 

3.2 3-11, 13, 
15, 17 

tables 1, 2 

60 12, 14, 16 

(cSt) 

Distilled water + methanol 
(4 : 1 by volume) 

0.95 1565 0.89 12, 14, 16 

TABLE 3 



338 E.  Trinh and T .  G. Wang 

REFERENCES 

LAUTERBORN, W. 1976 J .  Awuet. SOC. Am. 59, 283. 
MARSTON, P. 1980 J .  Acoust. SOC. Am. 67, 16. 
MAXSTON, P. t APFEL, R. 1979 J .  0011. Interface Sci. 68, 280. 
-TON, P. t APFEL, R. 1980 J. Acouet. SOC. Am. 67, 29. 
MARSTON, P., LOPORTO ARIONE, S. t PULLEN, G. 1981 J .  Awust. SOC. Am. 69,1499. 
MILLER, C .  & SCRIVEN, L. 1968 J. Fluid Mech. 32, 417. 
PROSPERETTI, A. 1980a J .  Mkc. 19, 149. 
PROSPERETTI, A. 1980b J .  Fluid Mech. 100, 333. 
TRINH, E., ZWEBN, A. t Wma,  T. 1982 J .  Fluid Mech. 115, 463. 


